网站首页 热点观察 财经资讯 环球要闻 商业资讯 文旅热点 品牌新闻 快消热点 体育赛事 娱乐精选 展会预告 前沿科技 房产装修

OpenCV:直方图均衡

发布日期:2022-12-13 浏览量:10069 点赞 155 +1

步骤:

第 1 步:手动均衡

第 2 步:通过使用 OpenCV 函数

什么是图像直方图?

它是图像强度分布的图形表示。它量化了所考虑的每个强度值的像素数。

第 1 步:手动均衡

%matplotlib inline

from IPython.display import display, Math, Latex

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

img = Image.open('DATA/einstein.jpg')

plt.imshow(img)

输出:


显示彩色图像

将图像转换为 numpy 数组,以便 OpenCV 可以使用:

img = np.asanyarray(img)

img.shape

输出:

(2354, 2560, 3)

将 RGB 转换为灰度:

import cv2

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img.shape

输出:

(2354, 2560)

显示图像:

plt.imshow(img, cmap='gray')

输出:


我们现在知道如何处理直方图了

img.max()

输出:

255

img.min()

输出:

0

img.shape

输出:

(2354, 2560)

把它展平:

flat = img.flatten()

# 1 row 2354 x 2560 = 6.026.240

flat.shape

输出:

(6026240,)

显示直方图

plt.hist(flat, bins=50)

请注意,灰度值在某个值周围分布很差

什么是直方图均衡?

为了更清楚,从上图中,你可以看到像素似乎聚集在可用强度范围的中间。直方图均衡所做的就是扩大这个范围。

# formula for creating the histogram

display(Math(r'P_x(j) = sum_{i=0}^{j} P_x(i)'))

# create our own histogram function

def get_histogram(image, bins):

   # array with size of bins, set to zeros

   histogram = np.zeros(bins)

   # loop through pixels and sum up counts of pixels

   for pixel in image:

       histogram[pixel] += 1

       # return our final result

       return histogram

hist = get_histogram(flat, 256)

plt.plot(hist)

[ ]

# create our cumulative sum function

def cumsum(a):

  a = iter(a)

  b = [next(a)]

  for i in a:

   b.append(b[-1] + i)

   return np.array(b)
   

# execute the fn

cs = cumsum(hist)


# display the result

plt.plot(cs)

[ ]

# formula to calculate cumulation sum

display(Math(r's_k = sum_{j=0}^{k} { rac{n_j}{N}}'))

# re-normalize cumsum values to be between 0-255

# numerator & denomenator

nj = (cs - cs.min()) * 255

N = cs.max() - cs.min()

# re-normalize the cdf

cs = nj / N

plt.plot(cs)

[ ]


Casting:

# cast it back to uint8 since we can't use floating point values in imagescs =

cs.astype('uint8')

plt.plot(cs)

输出:

[ ]

获取 CDF:

# get the value from cumulative sum for every index in flat, and set that as img_new

img_new = cs[flat]

# we see a much more evenly distributed histogram

plt.hist(img_new, bins=50)

它是如何工作的?

均衡意味着将一个分布(给定的直方图)映射到另一个分布(强度值的更广泛和更均匀的分布),因此强度值分布在整个范围内。

# get the value from cumulative sum for every index in flat, and set that as img_new

img_new = cs[flat]

# we see a much more evenly distributed histogram

plt.hist(img_new, bins=50)

# put array back into original shape since we flattened it

img_new = np.reshape(img_new, img.shape)

img_new

输出:

array([[233, 231, 228, ..., 216, 216, 215],

      [233, 230, 228, ..., 215, 215, 214],

      [233, 231, 229, ..., 213, 213, 212],

      ...,

      [115, 107,  96, ..., 180, 187, 194],

      [111, 103,  93, ..., 187, 189, 192],

      [111, 103,  93, ..., 187, 189, 192]], dtype=uint8)

一探究竟:

# set up side-by-side image display

fig = plt.figure()

fig.set_figheight(15)

fig.set_figwidth(15)

fig.add_subplot(1,2,1)

plt.imshow(img, cmap='gray')

# display the new image

fig.add_subplot(1,2,2)

plt.imshow(img_new, cmap='gray')

plt.show(block=True)

使用 OpenCV equalizeHist(img) 方法

第 2 步:通过使用 OpenCV 函数

# Reading image via OpenCV and Equalize it right away!

img = cv2.imread('DATA/einstein.jpg',0)

equ = cv2.equalizeHist(img)

准备好!这就是你需要做的!

fig = plt.figure()

fig.set_figheight(15)

fig.set_figwidth(15)

fig.add_subplot(1,2,1)

plt.imshow(img, cmap='gray')

# display the Equalized (equ) image

fig.add_subplot(1,2,2)

plt.imshow(equ, cmap='gray')

plt.show(block=True)

print("That?s it! Thank you once again!I hope will be helpful.")

输出:

That?s it! Thank you once again!

I hope will be helpful.

       原文标题 : OpenCV:直方图均衡

文章来源:第三方  文章编辑:中小媒 

上一篇 : OpenCV 对图像的基本操作